113,236 research outputs found

    Ionized Gas in Damped Lyman Alpha Protogalaxies: II. Comparison Between Models and the Kinematic Data

    Full text link
    We test semi-analytic models for galaxy formation with accurate kinematic data of damped Lyman alpha protogalaxies (DLAs) presented in the companion paper I. The models envisage centrifugally supported exponential disks at the centers of dark matter halos which are filled with ionized gas undergoing radial infall to the disks. The halo masses are drawn from cross-section weighted mass distributions predicted by CDM cosmogonies, or by the null hypothesis (TF model) that the dark matter mass distribution has not evolved since z ~ 3. In our models, C IV absorption lines detected in DLAs arise in infalling ionized clouds while the low-ion absorption lines arise from neutral gas in the disks. Using Monte Carlo methods we find: (a) The CDM models are incompatible with the low-ion statistics at more than 99% confidence whereas some TF models cannot be excluded at more than 88% confidence. (b) Both CDM and TF models agree with the observed distribution of C IV velocity widths. (c) The CDM models generate differences between the mean velocities of C IV and low ion profiles in agreement with the data, while the TF model produces differences in the means that are too large. (d) Both CDM and TF models produce ratios of C IV to low-ion velocity widths that are too large. (e) Both CDM and TF models generate C IV versus low-ion cross-correlation functions incompatible with the data. While it is possible to select model parameters resulting in consistency with the data, the disk-halo configuration assumed in both cosmogonies still does not produce significant overlap in velocity space between C IV low-ion velocity profiles. We conjecture that including angular momentum of the infalling clouds will increase the overlap between C IV and low-ion profiles.Comment: 18 pages, 12 Figures, Accepted for publication in the Dec. 20 issue of the Astrophysical Journa

    Heat conduction in 2D strongly-coupled dusty plasmas

    Full text link
    We perform non-equilibrium simulations to study heat conduction in two-dimensional strongly coupled dusty plasmas. Temperature gradients are established by heating one part of the otherwise equilibrium system to a higher temperature. Heat conductivity is measured directly from the stationary temperature profile and heat flux. Particular attention is paid to the influence of damping effect on the heat conduction. It is found that the heat conductivity increases with the decrease of the damping rate, while its magnitude agrees with previous experimental measurement.Comment: 4 pages, 2 figures, presented in SCCS2008 conferenc
    corecore